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Oscillatory instability in thermal cracking: A first-order phase-transition phenomenon
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The transition between straight and’oscillatory crack propagation is analyzed by simulation of the
phenomenon by means of the finite element method. The amplitude of a given undulating crack was
found to either increase or decrease in propagation depending on the velocity of the cooling front and
the temperature difference. The morphological phase diagram and wavelength obtained in this way are
compared with the results of linear stability analyses and experimental data in literature. The postcriti-
cal behavior is characterized by a jumplike loss of stability analogous to first-order phase transitions.
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I. INTRODUCTION

Crack pattern formation can be analyzed analogous to
other phenomena governed by moving boundary prob-
lems, as there are diffusion limited aggregation, dielectric
breakdown, and directional solidification, by means of
well-known techniques from the theory of nonlinear phe-
nomena. For instance, multiple crack propagation
caused by thermal shock was analyzed in [1] by rigorous
fracture mechanics and bifurcation theory applied to
straight cracks. In this way it became possible to numeri-
cally reproduce the experimentally observed hierarchical
crack propagation, except for the more or less distinct
undulations (Fig. 1 in [1]).

Yuse and Sano [2] carried out an ingeniously simple
experiment involving the unusual combination of thermal
shock and stationarity, which makes it well suited for the
study of thermal shock crack propagation. Their experi-
ment consisted in lowering a hot glass slab with constant
velocity v of a few mm/s into cold water, where AT was
chosen as 50 K to 300 K (Fig. 1). By variation of param-
eters they found the experimental conditions for the for-
mation of straight or undulating cracks. They represent-
ed their results as a morphological phase diagram in the
(v,AT) plane.

The experiment was simulated in [3] and [4] by spring
models, with the results that there were several morpho-
logical phases. However, no quantitative comparison
with the experiment was possible. Concerning the wave-
lengths, theory agreed with experiment.

The boundaries between the morphological phases
were calculated by Marder [5] and more appropriately by
Sasa, Sekimoto, and Nakanishi [6] by means of fracture
mechanics and linear stability analysis. Without consid-
ering nonlinear terms, the authors [6] stated that the
transition was a Hopf bifurcation. The wavelength
turned out too short compared with the experiment [2].
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The subjects of this paper are (a) the finite element
method (FEM) simulation of experiment, (b) investigation
of the transition from straight to undulating cracks, (c)
nonlinear analysis of the postcritical behavior with
respect to the character of the morphological phase tran-
sition (first or second order).

II. CRACK PROPAGATION EQUATION
AND FEM TECHNIQUE

We consider a crack propagating stably (i.e., in frac-
ture mechanical equilibrium) as the temperature field is
moving along the sample being sunk into the bath. Posi-
tion and direction of the propagating crack tip are
governed by the crack propagation criterion consisting of
conditions for the stress intensity factors K; and Ky;

KI=KIC’ KII=0 . (1)

K. is a property of the material. The stress intensity fac-
tors Ky and Ky; describe the singular stress field o near
the crack tip with respect to opening and shear mode
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FIG. 1. Scheme of the experiment by Yuse and Sano [2]. The
crack tip keeps ahead of the cooling front.
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FIG. 2. Incremental step in numerical simulation of crack
propagation.

(o, f1, fu are tensors. r and 6 are polar coordinates with
respect to the crack tip. A more detailed explanation of
the relevance of fracture mechanics for the present prob-
lem is given in [6].)

The numerical calculation is carried out in such a way
that the cooling front is made to advance incrementally
while the crack tip stays put. This makes an incremental
violation of (1), which is removed by an incremental ad-
justment of the crack tip position and direction (Fig. 2).
The direction of the increment is given by

86=-28KH/K1 . (3)

This relation can be derived from Eq. (31) in [7] for
K;=0. K{ and K|; were obtained by solving the ther-
moelastic problem for plane stress by means of the FEM
code MARC [8]. For boundary conditions we chose
stress-free crack face and no disturbance of the heat flow
by the crack as in [5] and [6]. The coordinate system is
chosen such that the bath level is always at x =0. The
stationary temperature field of the thin strip is given then
by the simple solution

T(x,v)=AT[1—exp(—uvx/D)] for x>0. 4)

D is the thermal diffusivity.

The inhomogeneous stress field and the undulating
crack shape require some adaption of the FEM grid. By
means of a transformation (x,y)—(x’,y’), an initial grid
with straight crack is transformed such as to be adapted
to the curved crack. The essential properties of the ini-
tial grid (boundary conditions, small mesh size near cool-
ing front and crack tip, special crack tip elements) are
conserved in the transformation. In order to avoid large
deformations of the mesh, the calculations are restricted
to small amplitudes.

IOI. MORPHOLOGICAL TRANSITIONS

For reasons of dimensionality, K takes the shape

K(a,0)=EaATV'L f , 5
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FIG. 3. Normalized stress intensity factor of straight crack
vs crack tip distance from cooling front, with velocity as a pa-
rameter of the family of curves. Higher AT makes a lower posi-
tion of the K, level in this representation. Stationary crack
propagation becomes possible if the K; curve of a given velocity
reaches K;.. This condition is met with a certain AT (v) making
up the lower solid curve in Fig. 4.

for a straight crack where E =Young’s modulus,
a=thermal expansion coefficient, L =sample width,
a =crack tip distance from cooling front. The dimen-
sionless function f is shown in Fig. 3 for two arbitrarily
chosen values of vL /D. Since the stresses vanish at large
distances, K; approaches zero for a —* . It has a max-
imum near the cooling front. For crack propagation it is
necessary that the K;(a) curve reaches or surpasses Ky..
As seen from Fig. 3, the condition of K, coinciding with
the maximum of the K;(a) curve makes a curve in the
(AT,v) plane which has the meaning of a phase boundary
in parameter space (lower solid curve in Fig. 4). In order
to find the parameter region of undulating cracks, and to
make sure that the result does not depend on the arbi-
trarily chosen initial conditions, we started from a
straight crack with a slight kink and from a sinusoidal
crack of small amplitude, and calculated the propagation
by successive incremental steps according to (1) and (3).
We obtained an oscillating crack with growing or decay-
ing amplitude as seen in Fig. 5, depending on AT and v.
The transition between growth and decay of the ampli-
tude defines another curve in the (AT,v) plane. This
curve was assumed to represent the phase boundary be-
tween straight and undulating cracks (upper solid curve
in Fig. 4).

Comparison with the experiment based on the parame-
ters given in [2] and [6] shows that these results agree
tolerably well except for very low velocity. The deviation
at low velocity could be due to heat loss of the sample be-
tween oven and bath. The deviations of the results in [6]
(dashed lines in Fig. 4) might be due to the infinite plate
approximation applied there, as already suspected by
those authors.

It is seen in Fig. 5 that also in the case of growing am-
plitude the initial inclination is reduced during the next
incremental steps. This seems to prove that a reduction
of an initial directional deviation must not be taken as a
stability criterion as done in [5].
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FIG. 4. Morphological phase diagram in
normalized (AT,v) space: “no crack/straight

crack” boundary, calculated as indicated in
Fig. 3, “straight/undulating” boundary, calcu-
lated as indicated in Fig. 5, experimental dots
after [2].
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IV. POSTCRITICAL BEHAVIOR

As an essential advantage of this FEM approach, the
type of phase transition can be determined by a nonlinear
analysis of the postcritical behavior. The amplitude func-
tion or envelope A4 (x) is assumed to obey an equation
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FIG. 5. FEM simulation of oscillatory crack propagation
starting from a straight crack with kink and from a sinusoidal
crack for vL/D =200. The (small) amplitude decays or in-
creases in propagation depending on AT. The transition defines
a AT (v) curve representing a phase boundary in parameter
space: upper solid curve in Fig. 4. Note that the wavelength ap-
pearing in simulated propagation does not depend on the pre-
crack.
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(6)

which is an extension of the Ginzburg-Landau equation
applied in [2]. Here, even powers of 4 /L are absent be-
cause 4 and — A4 should be solutions of this equation.
Near AT,, A(x) varies slowly such that the decay or
magnification length [ = A4 /(d A /dx) is well approximat-
edbyAd /[ A(x+A)— A(x)].

L/l as obtained by numerical calculation shows a
linear dependence on AT and A2 in good approximation
(Fig. 6). The most important information derived from
Fig. 6 is C;>0. With the assumption of C5 <0 one ob-
tains the locus of stationary solutions of (6), i.e.,
d A /dx =0, as in the plot of Fig. 7. So we have not got a
supercritical Hopf bifurcation, as suggested in [2], but a
subcritical one [9]. Therefore the postcritical behavior is
governed by a jumplike loss of stability analogous to a
first-order phase transition.
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FIG. 6. Characterizing the oscillatory instability as a subcrit-
ical Hopf bifurcation: slope implies C; >0 in (6). vL /D =200.
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FIG. 7. Stationary solutions of (6) with C, and C; from Fig.
6 and Cs from experiment [2]. Solid lines: stable branches;
dashed lines: unstable branches. The jumplike loss of stability
as indicated by arrows implies hysteresis. Finite fluctuations
may give rise to oscillatory propagation also for AT <AT..

This implies hysteresis, which should show up in ex-
periment. The width of the hysteresis loop in Fig. 7 is
given by A=C?% /4C,|C;|, according to (6). From Fig. 6
one obtains C; =82 and C;=4100. Cs has been derived
from experiment: 4 /L =~0.05 for the stationary ampli-
tude near AT, in Fig. 4(a) in [2], combined with the rela-
tion C;/Cs=—(A/L)* from (6) for AT=AT,, yields
C,/Cs=~—0.0025. Hence, A=0.03. This makes a rath-
er narrow loop, as seen in Fig. 7. It should be accessible
to experimental verification by observing ! of nonsta-
tionarily oscillating crack propagation. Apparently the
data in [2, Fig. 5(a)] were not taken for this purpose and
do not happen to cover the parameter region of the hys-
teresis loop.

Concerning the wavelength, the following can be stat-
ed. Since these numerical results are restricted to small
amplitudes and therefore are far away from the station-
ary solution, one cannot expect that the right wavelength
comes out. Nevertheless, the calculated wavelength in
Fig. 8 seems to be a meaningful quantity as it does not de-
pend on the shape of the arbitrarily chosen initial crack
as seen in Fig. 5, and not much on the amplitude. We ob-
tained A /L =0. 14 for small D /vL, to be compared with
0.05 in [6] and the experimental value 0.28 reported in [2,
Fig. 5(b)] (without information on v or AT).
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FIG. 8. Wavelength A/L of simulated cracks on the morpho-
logical phase boundary in Fig. 4.

Note added in proof. The calculated transition line be-
tween straight and undulating cracks in Fig. 4 has been
reproduced by the boundary element method. The ob-
tained first-order phase transition may be restricted to
large velocities.

V. CONCLUSIONS

We can state that the results of FEM simulation of os-
cillatory thermal shock crack propagation are similar to
the morphological phase diagram and wavelength ob-
served experimentally. A more thorough comparison be-
tween numerical simulation and experiment is precluded,
at present, by the scarcity of data available in literature.
Nonlinear analysis reveals the existence of a jumplike loss
of stability analogous to first-order phase transitions.
These calculations confirm the result in [6] that the feed-
back on propagation via change of the temperature field
due to the curved crack is not responsible for the oscilla-
tion. Its influence on crack propagation is to be investi-
gated by further FEM calculations.
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